Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.898
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573193

RESUMO

Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Humanos , Catalase , NAD , Citocromo P-450 CYP2E1 , Peróxido de Hidrogênio , Etanol , Ácidos Graxos
2.
Plant Cell Rep ; 43(5): 123, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642148

RESUMO

KEY MESSAGE: CitCAT1 and CitCAT2 were cloned and highly expressed in mature leaves. High temperatures up-regulated CitCAT1 expression, while low temperatures and Diversispora versiformis up-regulated CitCAT2 expression, maintaining a low oxidative damage. Catalase (CAT), a tetrameric heme-containing enzyme, removes hydrogen peroxide (H2O2) to maintain low oxidative damage in plants exposed to environmental stress. This study aimed to clone CAT genes from Citrus sinensis cv. "Oita 4" and analyze their expression patterns in response to environmental stress, exogenous abscisic acid (ABA), and arbuscular mycorrhizal fungal inoculation. Two CAT genes, CitCAT1 (NCBI accession: PP067858) and CitCAT2 (NCBI accession: PP061394) were cloned, and the open reading frames of their proteins were 1479 bp and 1539 bp, respectively, each encoding 492 and 512 amino acids predicted to be localized in the peroxisome, with CitCAT1 being a stable hydrophilic protein and CitCAT2 being an unstable hydrophilic protein. The similarity of their amino acid sequences reached 83.24%, and the two genes were distantly related. Both genes were expressed in stems, leaves, flowers, and fruits, accompanied by the highest expression in mature leaves. In addition, CitCAT1 expression was mainly up-regulated by high temperatures (37 °C), exogenous ABA, and PEG stress within a short period of time, whereas CitCAT2 expression was up-regulated by exogenous ABA and low-temperature (4 °C) stress. Low temperatures (0 °C) for 12 h just up-regulated CitCAT2 expression in Diversispora versiformis-inoculated plants, and D. versiformis inoculation up-regulated CitCAT2 expression, along with lower hydrogen peroxide and malondialdehyde levels in mycorrhizal plants at low temperatures. It is concluded that CitCAT2 has an important role in resistance to low temperatures as well as mycorrhizal enhancement of host resistance to low temperatures.


Assuntos
Fungos , Micorrizas , Micorrizas/fisiologia , Peróxido de Hidrogênio , Estresse Fisiológico/genética , Clonagem Molecular
3.
Artigo em Inglês | MEDLINE | ID: mdl-38644439

RESUMO

The growing need in the current market for innovative solutions to obtain lactose-free (L-F) milk is caused by the annual increase in the prevalence of lactose intolerance inside as well as the newborn, children, and adults. Various configurations of enzymes can yield two distinct L-F products: sweet (ß-galactosidase) and unsweet (ß-galactosidase and glucose oxidase) L-F milk. In addition, the reduction of sweetness through glucose decomposition should be performed in a one-pot mode with catalase to eliminate product inhibition caused by H2O2. Both L-F products enjoy popularity among a rapidly expanding group of consumers. Although enzyme immobilization techniques are well known in industrial processes, new carriers and economic strategies are still being searched. Polymeric carriers, due to the variety of functional groups and non-toxicity, are attractive propositions for individual and co-immobilization of food enzymes. In the presented work, two strategies (with free and immobilized enzymes; ß-galactosidase NOLA, glucose oxidase from Aspergillus niger, and catalase from Serratia sp.) for obtaining sweet and unsweet L-F milk under low-temperature conditions were proposed. For free enzymes, achieving the critical assumption, lactose hydrolysis and glucose decomposition occurred after 1 and 4.3 h, respectively. The tested catalytic membranes were created on regenerated cellulose and polyamide. In both cases, the time required for lactose and glucose bioconversion was extended compared to free enzymes. However, these preparations could be reused for up to five (ß-galactosidase) and ten cycles (glucose oxidase with catalase).

4.
J Exp Bot ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623889

RESUMO

Cassava is one of the most important tuber crops that is used for food, starch and bio-energy. However, cassava is susceptible to a number of diseases, especially cassava bacterial blight (CBB). Nitric oxide (NO) and hydrogen peroxide (H2O2) regulate plant growth and development, as well as stress responses. However, no direct relationships between the enzymes involved in the metabolic enzymes that produce and process these key signaling molecules has been demonstrated. Here, we provide evidence for the interaction between the nitrate reductase 2 (MeNR2) and catalase 1 (MeCAT1) proteins in vitro and in vivo, using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, respectively. MeNR2 is a positive regulator and MeCAT1 is a negative regulator of CBB resistance. MeNR2 was localized in the nucleus, cell membrane and peroxisome, while MeCAT1 was localized in the peroxisomes. The interactions between MeNR2 and MeCAT1 also had effects of their respective enzyme activities. Taken together, the data presented here suggested that there is coordination between H2O2 and NO signaling in cassava disease resistance, through the interactions between MeCAT1 and MeNR2.

5.
Plant Cell Rep ; 43(5): 130, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652336

RESUMO

KEY MESSAGE: We identify three SDEs that inhibiting host defence from Candidatus Liberibacter asiaticus psy62, which is an important supplement to the pathogenesis of HLB. Candidatus Liberibacter asiaticus (CLas) is the main pathogen of citrus Huanglongbing (HLB). 38 new possible sec-dependent effectors (SDEs) of CLas psy62 were predicted by updated predictor SignalP 5.0, which 12 new SDEs were found using alkaline phosphate assay. Among them, SDE4310, SDE4435 and SDE4955 inhibited hypersensitivity reactions (HR) in Arabidopsis thaliana (Arabidopsis, At) and Nicotiana benthamiana leaves induced by pathogens, which lead to a decrease in cell death and reactive oxygen species (ROS) accumulation. And the expression levels of SDE4310, SDE4435, and SDE4955 genes elevated significantly in mild symptom citrus leaves. When SDE4310, SDE4435 and SDE4955 were overexpressed in Arabidopsis, HR pathway key genes pathogenesis-related 2 (PR2), PR5, nonexpressor of pathogenesis-related 1 (NPR1) and isochorismate synthase 1 (ICS1) expression significantly decreased and the growth of pathogen was greatly increased relative to control with Pst DC3000/AvrRps4 treatment. Our findings also indicated that SDE4310, SDE4435 and SDE4955 interacted with AtCAT3 (catalase 3) and AtGAPA (glyceraldehyde-3-phosphate dehydrogenase A). In conclusion, our results suggest that SDE4310, SDE4435 and SDE4955 are CLas psy62 effector proteins that may have redundant functions. They inhibit ROS burst and cell death by interacting with AtCAT3 and AtGAPA to negatively regulate host defense.


Assuntos
Arabidopsis , Proteínas de Bactérias , Tabaco , Doenças das Plantas , Espécies Reativas de Oxigênio , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Doenças das Plantas/microbiologia , Tabaco/genética , Tabaco/microbiologia , Tabaco/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Citrus/microbiologia , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Liberibacter/patogenicidade , Liberibacter/fisiologia , Interações Hospedeiro-Patógeno , Plantas Geneticamente Modificadas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizobiaceae/fisiologia , Resistência à Doença/genética
6.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611786

RESUMO

Membrane-based sensors (MePSs) exhibit remarkable precision and sensitivity in detecting pressure changes. MePSs are commonly used to monitor catalytic reactions in solution, generating gas products crucial for signal amplification in bioassays. They also allow for catalyst quantification by indirectly measuring the pressure generated by the gaseous products. This is particularly interesting for detecting enzymes in biofluids associated with disease onset. To enhance the performance of a MePS, various structural factors influence membrane flexibility and response time, ultimately dictating the device's pressure sensitivity. In this study, we fabricated MePSs using polydimethylsiloxane (PDMS) and investigated how structural modifications affect the Young's modulus (E) and residual stress (σ0) of the membranes. These modifications have a direct impact on the sensors' sensitivity to pressure variations, observed as a function of the volume of the chamber (Σ) or of the mechanical properties of the membrane itself (S). MePSs exhibiting the highest sensitivities were then employed to detect catalyst quantities inducing the dismutation of hydrogen peroxide, producing dioxygen as a gaseous product. As a result, a catalase enzyme was successfully detected using these optimized MePSs, achieving a remarkable sensitivity of (22.7 ± 1.2) µm/nM and a limit of detection (LoD) of 396 pM.


Assuntos
Bioensaio , Gases , Catalase , Membranas , Catálise , Módulo de Elasticidade
7.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593652

RESUMO

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Assuntos
Catalase , Raios Ultravioleta , Catalase/metabolismo , Catalase/química , Humanos , Epiderme/efeitos da radiação , Epiderme/metabolismo , Epiderme/enzimologia , Pele/efeitos da radiação , Pele/metabolismo , Pele/química , Queratinas/química , Queratinas/metabolismo
8.
Chemosphere ; 357: 142029, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38626812

RESUMO

The application of herbicides in soil has been noted for its detrimental effect on the soil microbial community, crucial for various biochemical processes. This study provides a comprehensive assessment of the impact of butisanstar and clopyralid herbicides, both individually and in combination at different dosage (recommended field dose (RFD), ½, 2 and 5-times RFD). The assessment focuses on soil basal respiration (SBR), cumulative microbial respiration (CMR), and the activities dehydrogenase (DH), catalase (CAT), urease, acid and alkaline phosphatases (Ac-P and Alk-P) enzymes, along with their variations on days 10, 30, 60, and 90 post-herbicide application. Results indicate that, although herbicides, even at lower doses of RFD, demonstrate inhibitory effects on DH, CAT, and microbial respiration, they paradoxically lead to a significant enhancement in urease and phosphatase activities, even at higher doses. The inhibitory/enhancing intensity varies based on herbicide type, incubation period, and dosage. Co-application of herbicides manifests synergistic effects compared to individual applications. The most notable inhibitory effects on DH, CAT, and SBR are observed on the 30th day, coinciding with the highest activities of urease and phosphatases on the same day. The persistent inability to restore respiration and enzyme activities to initial soil (control) levels emphasizes the lasting adverse and inhibitory effects of herbicides, especially clopyralid, over the long term. It becomes apparent that soil microorganisms require an extended duration to decompose and acclimate to the presence of herbicides. Consequently, these agrochemical compounds pose a potential risk to crucial biochemical processes, such as nutrient cycling, ultimately impacting crop production.

9.
J Biochem Mol Toxicol ; 38(4): e23712, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602238

RESUMO

Type 1 diabetes (T1D) is an insulin-dependent autoimmune condition. Short chain fatty acids (SCFAs) are volatile fatty acids with 1-6 carbon atoms that influence glucose storage in the body and can reduce appetite, potentially decreasing T1D risk. Alpha-lipoic acid (α-LA), a type of SCFA, has previously been used to treat diabetic neuropathy and inflammation due to its antioxidant properties. This study aims to assess α-LA's protective effects against T1D and associated kidney damage in rats induced with streptozotocin. Diabetic rats were treated with α-LA orally for 15 days, resulting in improved blood glucose (56% decrease) and kidney function markers like blood urea nitrogen, creatinine and uric acid. α-LA also showed significant antioxidant effects by decreasing LPO as well as improving activities of antioxidant enzymes like superoxide dismutase, catalase and glutathione-S transferase and alleviated kidney damage caused by diabetes. Docking experiments suggest that α-LA may regulate diabetes-related changes at the epigenetic level through interactions with the SIRT1 protein, indicating its potential as a target for future antidiabetic drug development.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias , Ácido Tióctico , Ratos , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Wistar , Peroxidação de Lipídeos , Catalase/metabolismo , Glicemia/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
10.
Int J Phytoremediation ; 26(6): 936-946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630443

RESUMO

Vegetable cultivation under sewage irrigation is a common practice mostly in developing countries due to a lack of freshwater. Long-term usage provokes heavy metals accumulation in soil and ultimately hinders the growth and physiology of crop plants and deteriorates the quality of food. A study was performed to investigate the role of brassinosteroid (BRs) and silicon (Si) on lettuce, spinach, and cabbage under lead (Pb) and cadmium (Cd) contaminated sewage water. The experiment comprises three treatments (control, BRs, and Si) applied under a completely randomized design (CRD) in a growth chamber. BRs and Si application resulted in the highest increase of growth, physiology, and antioxidant enzyme activities when applied under canal water followed by distilled water and sewage water. However, BRs and Si increased the above-determined attributes under the sewage water by reducing the Pb and Cd uptake as compared to the control. It's concluded that sewerage water adversely affected the growth and development of vegetables by increasing Pb and Cd, and foliar spray of Si and BRs could have great potential to mitigate the adverse effects of heavy metals and improve the growth. The long-term alleviating effect of BRs and Si will be evaluated in the field conditions at different ecological zones.


Assuntos
Verduras , Águas Residuárias , Brassinosteroides , Esgotos , Cádmio , Antioxidantes , Silício , Chumbo , Biodegradação Ambiental , Água
11.
J Microbiol Biol Educ ; 25(1): e0006523, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661418

RESUMO

There are places on earth that are considered to possess extreme physico-chemical characteristics as they relate to life. Surprisingly, there are microbes that have adapted various strategies that enable them to form robust communities in these environments. The microbes that live in these environments, called extremophiles, are described as being thermophilic, psychrophilic, halophilic, acidophilic, alkaliphilic, barophilic, and so on. Given that extremophiles were not discovered until relatively recently due to a view point that the environments in which they inhabited were not conducive to life, it is reasonable to conclude that the concept of extremophiles may be hard to grasp for students. Herein is described a laboratory exercise adapted from laboratory exercises that use mesophilic catalase enzymes to illustrate the influence of physico-chemical parameters on enzyme activity. Catalase is an enzyme that accelerates the degradation of hydrogen peroxide to water and oxygen gas. In addition to mesophilic catalases, the catalase from Pyrobaculum calidifontis, a hyperthermophile with an optimal growth temperature of 90°C, is used to highlight the adaptation of an enzyme to an extreme environment. A visual comparison of bubble production by the hyperthermophilic and mesophilic enzymes after heating at high temperatures dramatically illustrates differences in thermostability that will likely reinforce concepts that are given in a pre-laboratory lecture that discusses not only the extremophiles themselves but also their applications in biotechnology and possible role in the field of astrobiology.

12.
Environ Monit Assess ; 196(5): 466, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647712

RESUMO

Utilizing monoalgal species for wastewater treatment is facing tremendous challenges owing to changing wastewater complexity in terms of physico-chemical characteristic, nutrient and metal concentration. The environmental conditions are also fluctuating therefore, the formation of robust system is of utmost importance for concomitant sustainable wastewater treatment and bioenergy production. In the present study, the tolerance and adaptability potential of algal consortia-1 (Chlorococcum humicola and Tetradesmus sp.) and consortia-2 (Chlorococcum humicola, Scenedesmus vacuolatus and Tetradesmus sp.) treated with municipal wastewater were examined under natural environmental conditions. The results exhibited that consortia-2 was more competent in recovering nitrate-nitrogen (82.92%), phosphorus (70.47%), and heavy metals (31-73.70%) from municipal wastewater (100%) than consortia-1. The results further depicted that total chlorophyll, carbohydrate, and protein content decreased significantly in wastewater-treated consortia-1 as compared to consortia-2. However, lipid content was increased by 4.01 and 1.17 folds in algal consortia-1 and consortia-2 compared to their respective controls. Moreover, absorption peak at 1740.6 cm-1 reflected higher biofuel-producing potential of consortia-1 as compared to consortia-2 as confirmed through FTIR spectroscopy. The results also revealed that consortia-2 showed the highest photosynthetic performance which was evident from the increment in the active photosystem-II reaction center (1.724 ± 0.068), quantum efficiency (0.633 ± 0.038), and performance index (3.752 ± 0.356). Further, a significant increase in photosynthetic parameters was observed in selected consortia at lag phase, while a noteworthy decline was observed at exponential and stationary phases in consortia-1 than consortia-2. The results also showed the maximum enhancement in ascorbic acid (2.43 folds), proline (3.34 folds), and cysteine (1.29 folds) in consortia-2, while SOD (1.75 folds), catalase (2.64 folds), and GR (1.19 folds) activity in consortia-1. Therefore, it can be concluded that due to remarkable flexibility and photosynthetic performance, consortia-2 could serve as a potential candidate for sustainable nutrient resource recovery and wastewater treatment, while consortia-1 for bio-fuel production in a natural environment. Thus, formation of algal consortia as the robust biosystem tolerates diverse environmental fluctuations together with wastewater complexity and ultimately can serve appropriate approach for environmental-friendly wastewater treatment and bioenergy production.

13.
Biochemistry (Mosc) ; 89(3): 441-450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38648764

RESUMO

The Siberian frog Rana amurensis has a uniquely high tolerance to hypoxia among amphibians, as it is able to withstand several months underwater with almost no oxygen (0.2 mg/liter) vs. several days for other studied species. Since it was hypothesized that hypoxia actives the antioxidant defense system in hypoxia-tolerant animals, one would expect similar response in R. amurensis. Here, we studied the effect of hypoxia in the Siberian frog based on the transcriptomic data, activities of antioxidant enzyme, and content of low-molecular-weight antioxidants. Exposure to hypoxia upregulated expression of three relevant transcripts (catalase in the brain and two aldo-keto reductases in the liver). The activities of peroxidase in the blood and catalase in the liver were significantly increased, while the activity of glutathione S-transferase in the liver was reduced. The content of low-molecular-weight antioxidants (thiols and ascorbate) in the heart and liver was unaffected. In general, only a few components of the antioxidant defense system were affected by hypoxia, while most remained unchanged. Comparison to other hypoxia-tolerant species suggests species-specific adaptations to hypoxia-related ROS stress.

14.
Comp Biochem Physiol B Biochem Mol Biol ; 273: 110980, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636724

RESUMO

Boring sponge infection affects growth, development and reduces the soft tissue weight of oysters. In this study, we investigated the effects of boring sponge on the activity of three antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GP)) in the mantle, and the production of reactive oxygen species (ROS) and potential genotoxicity in hemocytes of the Pacific oyster Magallana gigas. Our results showed a significant increase in ROS production and DNA damage in hemocytes. Notably, the activity of SOD, CAT, and GP in the mantle was not significantly affected by boring sponge infection. Collectively, these results suggest that sponge invasion may cause oxidative stress in Pacific oyster hemocytes through ROS overproduction.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 493-498, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660857

RESUMO

OBJECTIVE: To investigate the relationship between clinical indicators of CRAB symptoms and antioxidant enzyme activity in patients with multiple myeloma (MM). METHODS: The activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in the bone marrow supernatants of 44 patients with MM and 12 patients with non-malignant hematological diseases was detected by colorimetric assay, and then the differences in the activity of antioxidant enzymes between the two groups were compared. Furthermore, the relationship between the activity of antioxidant enzymes in the MM group and the levels of serum calcium, serum creatinine (Scr), hemoglobin (Hb), alkaline phosphatase (ALP) as well as bone lesions were analyzed. RESULTS: The antioxidant enzyme activity was lower in MM patients compared with the control group (P < 0.05). When the concentrations of serum calcium and ALP were higher than the normal levels, Hb was lower than 85 g/L, and there were multiple bone lesions, the activity of CAT, SOD and GPX was significantly declined (P < 0.05); When the concentration of Scr≥177 µmol/L, the activity of GPX was significantly declined (P < 0.05). Regression analyses showed that CAT, SOD and GPX were negatively correlated with serum calcium (r =-0.538, r =-0.456, r =-0.431), Scr (r =-0.342, r =-0.384, r =-0.463), and ALP (r =-0.551, r =-0.572, r =-0.482). CONCLUSION: The activity of antioxidant enzymes, including CAT, SOD and GPX, were decreased in patients with MM and they were negatively correlated with some clinical indicators of CRAB symptoms (such as serum calcium, Scr, and ALP), which suggests that promoting the activity of antioxidant enzymes may be beneficial to treat the CRAB symptoms of the patients with MM.


Assuntos
Fosfatase Alcalina , Antioxidantes , Cálcio , Catalase , Glutationa Peroxidase , Mieloma Múltiplo , Superóxido Dismutase , Humanos , Glutationa Peroxidase/sangue , Glutationa Peroxidase/metabolismo , Superóxido Dismutase/sangue , Superóxido Dismutase/metabolismo , Fosfatase Alcalina/sangue , Fosfatase Alcalina/metabolismo , Catalase/sangue , Catalase/metabolismo , Antioxidantes/metabolismo , Cálcio/sangue , Cálcio/metabolismo , Creatinina/sangue , Braquiúros , Medula Óssea
16.
Appl Environ Microbiol ; : e0153823, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587394

RESUMO

A plethora of gene regulatory mechanisms with eccentric attributes in Deinoccocus radiodurans confer it to possess a distinctive ability to survive under ionizing radiation. Among the many regulatory processes, small RNA (sRNA)-mediated regulation of gene expression is prevalent in bacteria but barely investigated in D. radiodurans. In the current study, we identified a novel sRNA, DrsS, through RNA-seq analysis in D. radiodurans cells while exposed to ionizing radiation. Initial sequence analysis for promoter identification revealed that drsS is potentially co-transcribed with sodA and dr_1280 from a single operon. Elimination of the drsS allele in D. radiodurans chromosome resulted in an impaired growth phenotype under γ-radiation. DrsS has also been found to be upregulated under oxidative and genotoxic stresses. Deletion of the drsS gene resulted in the depletion of intracellular concentration of both Mn2+ and Fe2+ by ~70% and 40%, respectively, with a concomitant increase in carbonylation of intracellular protein. Complementation of drsS gene in ΔdrsS cells helped revert its intracellular Mn2+ and Fe2+ concentration and alleviated carbonylation of intracellular proteins. Cells with deleted drsS gene exhibited higher sensitivity to oxidative stress than wild-type cells. Extrachromosomally expressed drsS in ΔdrsS cells retrieved its oxidative stress resistance properties by catalase-mediated detoxification of reactive oxygen species (ROS). In vitro binding assays indicated that DsrS directly interacts with the coding region of the katA transcript, thus possibly protecting it from cellular endonucleases in vivo. This study identified a novel small RNA DrsS and investigated its function under oxidative stress in D. radiodurans. IMPORTANCE: Deinococcus radiodurans possesses an idiosyncratic quality to survive under extreme ionizing radiation and, thus, has evolved with diverse mechanisms which promote the mending of intracellular damages caused by ionizing radiation. As sRNAs play a pivotal role in modulating gene expression to adapt to altered conditions and have been delineated to participate in almost all physiological processes, understanding the regulatory mechanism of sRNAs will unearth many pathways that lead to radioresistance in D. radiodurans. In that direction, DrsS has been identified to be a γ-radiation-induced sRNA, which is also induced by oxidative and genotoxic stresses. DrsS appeared to activate catalase under oxidative stress and detoxify intracellular ROS. This sRNA has also been shown to balance intracellular Mn(II) and Fe concentrations protecting intracellular proteins from carbonylation. This novel mechanism of DrsS identified in D. radiodurans adds substantially to our knowledge of how this bacterium exploits sRNA for its survival under stresses.

17.
Methods Mol Biol ; 2798: 213-221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587746

RESUMO

Catalase, a pivotal enzyme in plant antioxidative defense mechanisms, plays a crucial role in detoxifying hydrogen peroxide, a reactive oxygen species (ROS). In this chapter, a comparative analysis of catalase activity was conducted using two distinct methodologies: spectrophotometry and non-denaturing polyacrylamide gel electrophoresis (PAGE). The spectrophotometric approach allowed the quantification of catalase activity by measuring the breakdown rate of hydrogen peroxide, while native PAGE enabled the separation and visualization of catalase isozymes, based on their native molecular weight and charge characteristics, and specific staining assay. Both methods provide valuable insights into catalase activity, offering complementary information on the enzyme's functional diversity and distribution within different plant tissues. This study integrates different techniques, previously described, to comprehensively elucidate the role of catalase in plant metabolism. Furthermore, it provides the possibility of obtaining a holistic understanding of antioxidant defense mechanisms by considering both total activity and isoenzyme distribution of catalase enzyme.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Catalase , Eletroforese em Gel de Poliacrilamida Nativa , Espectrofotometria
18.
Sci Rep ; 14(1): 6688, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509121

RESUMO

The aim of this study was to determine the levels of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) in patients with refractory epilepsy. Serum superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels were determined using the spectrophotometer method. Refractory epilepsy patients' serum superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels were statistically significant compared to the healthy control group (p < 0.05). In conclusion, superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA) levels may play an important role in the etiopathogenesis of refractory epilepsy. This study was the first to investigate some parameters in refractory epilepsy disease.


Assuntos
Antioxidantes , Epilepsia Resistente a Medicamentos , Humanos , Antioxidantes/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Malondialdeído , Glutationa Peroxidase/metabolismo
19.
Clin Toxicol (Phila) ; 62(2): 101-106, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38512019

RESUMO

BACKGROUND: Valproic acid has been widely used as an antiepileptic drug for several decades. Long-term valproic acid treatment is usually accompanied by liver injury. Although both men and women are susceptible to valproic acid-associated liver injury, hepatotoxicity differs between the sexes. However, the mechanisms underlying sex differences in valproic acid-associated liver injury remain unclear. METHODS: To explore potential risk factors for the susceptibility to valproic acid-associated liver injury, 231 pediatric patients with epilepsy (119 males, 112 females) were enrolled for laboratory and genetic analysis. RESULTS: Heterozygous genotype of catalase C-262T (P = 0.045) and the concentrations of glutathione (P = 0.002) and thiobarbituric acid-reactive substances (P = 0.011) were associated with the sex-specific susceptibility to valproic acid-associated liver injury. Meanwhile, logistic regression analysis revealed that carriers of heterozygous genotype of catalase C-262T (P = 0.010, odds ratio: 4.163; 95 percent confidence interval 1.400 - 7.378), glutathione concentration (P = 0.001, odds ratio: 2.421; 95 percent confidence interval 2.262 - 2.591) and male patients (P = 0.005, odds ratio: 1.344; 95% confidence interval 0.782 - 2.309) had a higher risk for valproic acid-associated liver injury. DISCUSSION: The mechanism underlying valproic acid-induced hepatotoxicity remains unclear. Additionally, factors that may contribute to the observed differences in the incidence of hepatotoxicity between males and females have yet to be defined. This study identifies several genetic factors that may predispose patients to valproic acid-associated hepatotoxicity. LIMITATIONS: This relatively small sample size of children with one ethnicity some of whom were taking other antiepileptics that are potentially hepatotoxic. CONCLUSION: Catalase C-262T genotype, glutathione concentration and gender (male) are potential risk factors for the susceptibility to valproic acid-associated liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Epilepsia , Humanos , Feminino , Masculino , Criança , Ácido Valproico/efeitos adversos , Caracteres Sexuais , Catalase/genética , Epilepsia/tratamento farmacológico , Glutationa , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética
20.
Mol Biol Rep ; 51(1): 451, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536507

RESUMO

BACKGROUND: Mitochondrial organelles play a crucial role in cellular metabolism so different cell types exhibit diverse metabolic and energy demands. Therefore, alternations in the intracellular distribution, quantity, function, and structure of mitochondria are required for stem cell differentiation. Finding an effective inducer capable of modulating mitochondrial activity is critical for the differentiation of specific stem cells into osteo-like cells for addressing issues related to osteogenic disorders. This study aimed to investigate the effect of oxaloacetate (OAA) on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro. METHODS AND RESULTS: First, the most favorable OAA concentration was measured through MTT assay and subsequently confirmed using acridine orange staining. Human ADSCs were cultured in osteogenic medium supplemented with OAA and analyzed on days 7 and 14 of differentiation. Various assays including alkaline phosphatase assay (ALP), cellular calcium content assay, mineralized matrix staining with alizarin red, catalase (CAT) and superoxide dismutase (SOD) activity, and real-time RT-PCR analysis of three bone-specific markers (ALP, osteocalcin, and collagen type I) were conducted to characterize the differentiated cells. Following viability assessment, OAA at a concentration of 1 µM was considered the optimal dosage for further studies. The results of osteogenic differentiation assays showed that OAA at a concentration of 1 × 10- 6 M significantly increased ALP enzyme activity, mineralization, CAT and SOD activity and the expression of bone-specific genes in differentiated cells compared to control groups in vitro. CONCLUSIONS: In conclusion, the fundings from this study suggest that OAA possesses favorable properties that make it a potential candidate for application in medical bone regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Tecido Adiposo/metabolismo , Ácido Oxaloacético/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Superóxido Dismutase/metabolismo , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...